علاوه بر موارد گفته شده،سیم و کابل محدودسازهای ابررسانائی جریان خطا یا sfcl نیز رده تازهای از وسایل حفاظتی سیستم قدرت را ارائه میکنند که قادرند شبکه را از اضافه جریانهای خطرناکی که باعث قطعی پر هزینه برق و خسارت به قطعات حساس سیستم میشوند حفاظت نمایند. اتصال کوتاه یکی از خطاهای مهم در سیستم قدرت است که در زمان وقوع، جریان خطا تا بیشتر از 10 برابر جریان نامی افزایش مییابد و با رشد و گسترش شبکههای برق، به قدرت اتصال کوتاه شبکه نیز افزوده میشود. تولید جریانهای خطای بزرگتر، ازدیاد گرمای حاصله ناشی از عبور جریان القائی زیاد در ژنراتورها، ترانسفورماتورها و سایر تجهیزات و همچنین کاهش قابلیت اطمینان شبکه را در پی دارد. لذا عبور چنین جریانی از شبکه احتیاج به تجهیزاتی دارد که توانایی تحمل این جریان را داشته باشند و جهت قطع این جریان نیازمند کلیدهایی با قدرت قطع بالا هستیم که هزینههای سنگینی به سیستم تحمیل میکند. اما اگر به روشی بتوان پس از آشکارسازی خطا، جریان را محدود نمود، از نظر فنی و اقتصادی صرفهجویی قابل توجهی صورت میگیرد. انواع مختلفی از محدود کنندههای خطا تا به حال برای شبکههای توزیع و انتقال معرفی شدهاند که سادهترین آنها فیوزهای معمولی است که البته پس از هر بار وقوع اتصال کوتاه باید تعویض شوند. از آنجاییکه جریان اتصال کوتاه در لحظات اولیه به خصوص در پریود اول موج جریان، دارای بیشترین دامنه است و بیشترین اثرات مخرب از همین سیکلهای اولیه ناشی میشود باید محدودسازهای جریان خطا بلافاصله بعد از وقوع خطا در مدار قرار گیرند. محدودکنندههای جریان اتصال کوتاه طراحی شده در دهههای اخیر، عناصری سری با تجهیزات شبکه هستند و وظیفه دارند جریان اتصال کوتاه مدار را قبل از رسیدن به مقدار حداکثر خود محدود نمایند به طوری که توسط کلیدهای قدرت موجود قابل قطع باشند. این تجهیزات در حالت عادی، مقاومت کمی در برابر عبور جریان از خود نشان میدهند ولی پس از وقوع اتصال کوتاه و در لحظات اولیه شروع جریان، مقاومت آنها یکباره بزرگ شده و از بالا رفتن جریان اتصال کوتاه جلوگیری میکنند. این تجهیزات پس از هر بار عملکرد باید قابل بازیابی بوده و در حالت ماندگار سیستم، باعث ایجاد اضافه ولتاژ و یا تزریق هارمونیک به سیستم نگردند. محدودسازهای اولیه با استفاده از کلیدهای مکانیکی امپدانسی را در زمان خطا در مسیر جریان قرار میدادند. با ورود ادوات الکترونیک قدرت کلیدهای تریستوری برای این موضوع مورد استفاده قرار گرفتند و مدارهای متعددی از جمله مدارهای امپدانس تشدید و ابررسانا، ارائه گردیده است. محدودکنندههای ابررسانا در شرایط بهرهبرداری عادی سیستم یک سیمپیچ با خاصیت ابررسانایی بوده (مقاومت و افت ولتاژ کمی را باعث میشود) ولی به محض وقوع اتصال کوتاه و افزایش جریان از یک حد معینی (جریان بحرانی) سیمپیچ مربوط مقاومت بالایی از خود نشان میدهد و به همین دلیل جریان خطا کاهش مییابد. عمل فوق در زمان کوتاهی انجام میپذیرد و نیاز به سیستم کشف خطا نمیباشد. برآورد اولیه بخش ابر رسانائی epri نشان میدهد که استفاده از محدودسازهای ابررسانائی جریان یک بازار فروش با درآمد حدود 3 تا 7 میلیارد دلار در 15 سال آینده به وجود خواهد آورد.
سوئیچهای ابررسانا
با تغییر در شدت میدان مغناطیسی، امکان تغییر در وضعیت جسم ابررسانا از ابررسانایی به مقاومتی و برعکس امکانپذیر است. بنابراین از مواد ابررسانا جهت انجام سوئیچینگ یا کلیدزنی نیز میتوان بهره گرفت. تحقیقات اولیه در این زمینه از اواخر دهه 1950 میلادی آغاز شد و کوششهایی برای استفاده از سوئیچهای ابررسانا در مدارها و حافظه کامپیوترهای بزرگ صورت گرفت. باک در سال 1956 مداری با نام کرایوترون شامل یک سیمپیچ نیوبیوم با دمای بحرانی 3/9 درجه کلوین و هستهای از سیم تانتالوم با دمای بحرانی 4/4 درجه کلوین معرفی نمود که با توجه دمای 2/4 درجه کلوین هلیوم مایع، امکان تغییر وضعیت سیم تانتالوم در اثر ایجاد جریان الکتریکی و درنتیجه میدان مغناطیسی در سیمپیچ نیبیوم وجود داشت. با توسعه دانش نیمههادی، توجه به سوئیچهای ابررسانا کاهش یافت اما حجم و تلفات کمتر، و سرعت بالاتر تراشههای ابررسانا نسبت به تراشههای نیمههادی، استفاده از سلولهای کرایوترونی و جایگزینی ابررسانا به جای مدارهای مسی را برای ساخت ابرکامپیوترهای بسیار سریع و کم تلفات، حتی با وجود پیشرفتهای صنعت نیمههادی توجیهپذیر میسازد. علاوه بر سلولهای کرایوترونی که با سرعت 1/0 میکروثانیه در ساخت حافظه و تراشههای الکترونیک قابل استفاده است، از اتصالات جوزفسون که مبنای عملکرد آنها، اثر تونلزنی است نیز برای ساخت سوئیچهای بسیار سریع و با سرعت 1/0 نانوثانیه (فرکانس 10 گیگاهرتز) استفاده شده اما درمورد تکنولوژی ساخت آنها به تعداد زیاد، پژوهشها ادامه دارد.
ابررساناها و ژنراتورهای هیدرودینامیک مغناطیسی سیم ارت ژنراتورهای هیدرودینامیک مغناطیسی: اصول کلی ژنراتورهای هیدرودینامیک مغناطیسی (mhd) که از سال 1959 پژوهشهایی برای تولید برق به وسیله آنها شروع شده و هنوز ادامه دارد، بر این اساس است که جریان گاز پلاسما (بسیار داغ) یا فلز مذاب از میان میدان مغناطیسی قوی عبور داده میشود. با عبور گاز داغ یا فلز مذاب، در اثر میدان مغناطیسی بسیار قوی موجود، یونهای مثبت و منفی به سمت الکترودهایی که در بالا و پایین جریان گاز پلاسما یا فاز مذاب قرار دارند، جذب میشوند و مانند یک ژنراتور جریان مستقیم، تولید الکتریسیته را باعث میشوند. قدرت الکتریکی این ژنراتور جریان مستقیم با اینورترهای الکترونیک قدرت، به برق جریان متناوب تبدیل و به شبکه متصل میشود. با توجه به هزینه بالای تولید الکتریسیته در ژنراتورهای mhd، استفاده از آنها تنها به منظور یکنواختی منحنی مصرف در زمانهای پرباری شبکه مفید است. سیمپیچهای بزرگ ابررسانا که از مواد ابررسانای متعارف مانند آلیاژ نیوبیوم تیتانیوم ساخته شدهاند برای تولید میدانهای مغناطیسی بسیار قوی مناسب و قابل استفاده است. اگر فاصله دو الکترود 1/0 متر، سرعت یونها 400 متر بر ثانیه و میدان مغناطیسی 5 تسلا باشد، ولتاژ خروجی 200 ولت خواهد بود و در طول کانال 6 متری و با قطر یک متر، 40 مگاوات انرژی قابل تولید است. مزیت اصلی ژنرتورهای mhd وزن نسبتاً کم آنها در مقایسه با ژنراتورهای متعارف است که استقبال از کاربرد آنها را در صنایع هوایی و دریایی موجب شده است.